MIGHTY ENGINES FOR OUR NEWEST WARSHIPS

THE PEACOCK—FIRST OF ITS CLASS

TWO hundred thousand horse-power must be concentrated in one ship which attains a speed of 40 land miles an hour. Oil-fueled electric drive make feat possible.

In 1907 huge new engines were installed in the huge new engines were installed in the new battleship of the British fleet. It was the first to use the new machines, which were designed to produce a 60,000-horse-power output. The engines were designed by Sir Hiram Maxim, the British engineer who invented the machine gun.

The engines are massive, weighing over 7 tons each. They are mounted on a common base and are driven by a single shaft. The engines are supplied with steam and water by a system of pipes and valves.

These engines are designed to produce a maximum of 70,000 horsepower, which is enough to drive the ship at a speed of 15 knots (28 miles per hour) in a straight line.

The engines are also equipped with a system of governors that control the speed of the ship. These governors are connected to the engines by a system of electric cables. When the governor senses that the ship is going too fast, it sends an electric signal to the engines, which reduces the speed of the ship.

The engines are also equipped with a system of automatic controls that allow the ship to maintain a constant speed. These controls are connected to the engines by a system of hydraulic lines. When the ship encounters a headwind or a tailwind, the controls adjust the speed of the ship to keep it at a constant speed.

The engines are also equipped with a system of safety devices that prevent the ship from being damaged. These devices include a system of fire extinguishers, a system of water pumps, and a system of oil tanks.

The engines are also equipped with a system of electrical generators that provide power for the ship's auxiliary systems. These generators are powered by the engines and provide electricity for the ship's lighting, heating, and other systems.

The engines are also equipped with a system of power brakes that allow the ship to stop quickly. These brakes are activated by hydraulic lines that are connected to the engines.

The engines are also equipped with a system of emergency stops that allow the ship to be stopped quickly in case of an emergency. These stops are activated by hydraulic lines that are connected to the engines.

The engines are also equipped with a system of emergency generators that provide power for the ship's auxiliary systems in case of an emergency. These generators are powered by the engines and provide electricity for the ship's lighting, heating, and other systems.

The engines are also equipped with a system of emergency brakes that allow the ship to stop quickly in case of an emergency. These brakes are activated by hydraulic lines that are connected to the engines.

The engines are also equipped with a system of emergency stops that allow the ship to be stopped quickly in case of an emergency. These stops are activated by hydraulic lines that are connected to the engines.

The engines are also equipped with a system of emergency generators that provide power for the ship's auxiliary systems in case of an emergency. These generators are powered by the engines and provide electricity for the ship's lighting, heating, and other systems.